DemoEvent – Accidentology

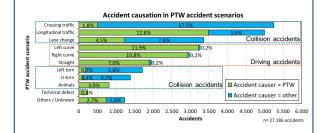
Marcus Petzold, Peter Miklis, Thomas Unger, VUFO GmbH, Germany VUFO GmbH, Germany VUFO GmbH, Germany

1. Overview

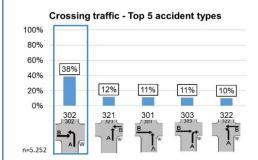
• What have we done in the past in CMC based on real accident data? (1/2)


 1. Accident analysis with representative accident data from Germany 2016

- Which scenario groups address how many accidents?
- What is the proportion of the main accident causer?


2. Assessment of C-ITS application potential

C-ITS Definitions of 2017/2018!



- What is the calculated potential of different C-ITS applications for PTW depending on the accident scenarios?
- Evaluation of the potential of 19 C-ITS

3. Updating the representative accident data from Germany to 2019

 Update to the latest accident data from Germany. 4. Definition of relevant use cases based on accident type

 Which use cases frequently occur in the scenario groups?

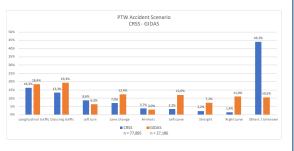
1. Overview

• What have we done in the past in CMC based on real accident data? (2/2)

> Why did the accident happen?

6. Research module (RM) 2:

GIDAS-PCM Analysis

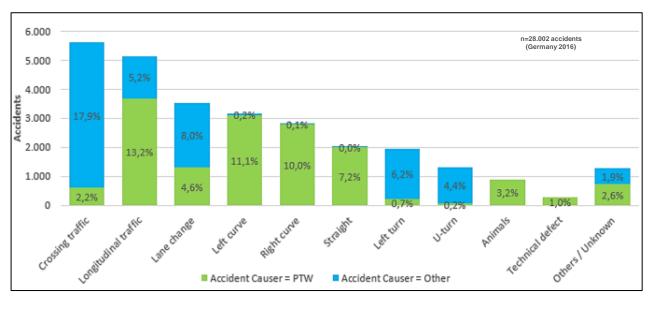

Norther resource to represente divination for represente divination for represente divination for represente divination for representation of the second of the seco

What can a test scenario for this use case look like, based on reconstructed and simulated accident data?

7. Accident analysis of European Countries (IGLAD)

TOP 5 PTW Accident Types (IGLAD)

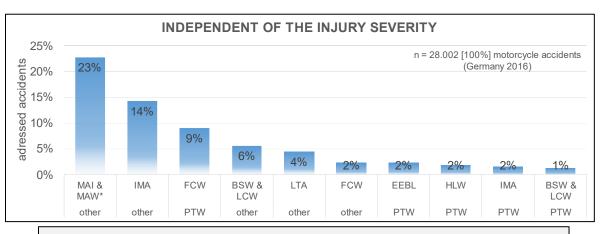
 How does the German accident data compare with Italian and French accident data? 8. Accident analysis of US (CRSS)


 How do German accident data compare with U.S. accident data

Accident analysis with representative accident data from Germany 2016 Results published

Methodology

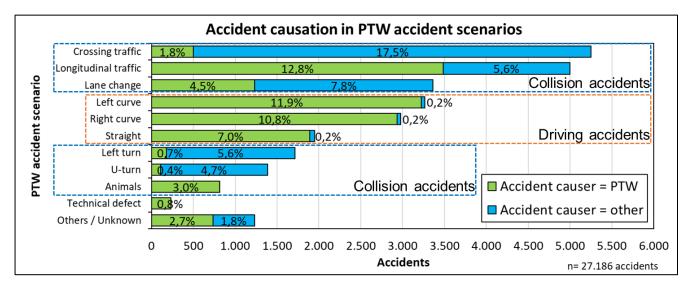
Steps	Description
Master data set for PTW accidents	 GIDAS data Weighted to represent German accident situation on PTW in 2016
Forming of scenario groups	 Summary of different accident types to accident scenario in total 10 scenarios
Analysis of scenario groups	Which scenario groups address how many accidents?What is the proportion of the main causer?



Assessment of C-ITS application potential Results published

Methodology

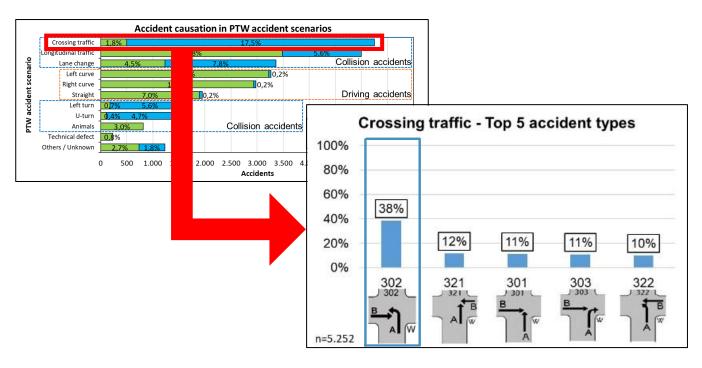
Steps	Description
Evaluation of C-ITS applications	 Conversion of C-ITS specifications to GIDAS filter criteria C-ITS definitions of 2017/2018
GIDAS analysis	 Analysis regarding specific characteristics of the systems
Potential of C-ITS applications	 What is the calculated potential of different C-ITS applications for PTW depending on the accident scenario? Evaluation of the potential of 19 C-ITS


*MAI & MAW [Motorcycle Approach Indication & Motorcycle Approach Warning] = Combination of IMA, LTA, BSW/LCW, FCW, DNPW

Updating the representative accident data from Germany to 2019 Results published

Methodology

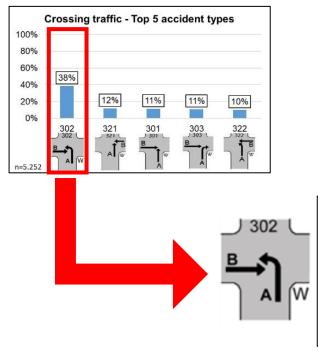
Steps	Description
Updating Master data set for PTW accidents	 Update of German accident situation on PTW from 2016 to 2019.
Analysis of scenario groups	 Which scenario groups address how many accidents? What is the proportion of the main causer?

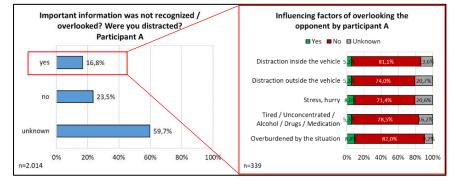


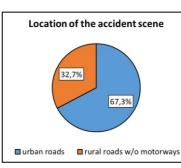
Definition of relevant use cases based on accident type Results published

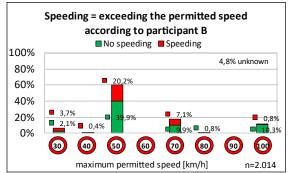
Methodology

Steps	Description
Analysis of each PTW accident scenario	 Which use cases frequently occur in the sceanrio group?

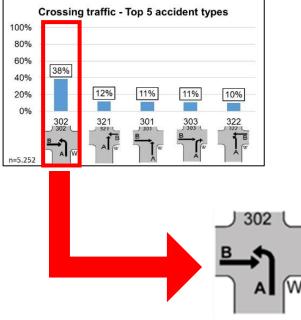


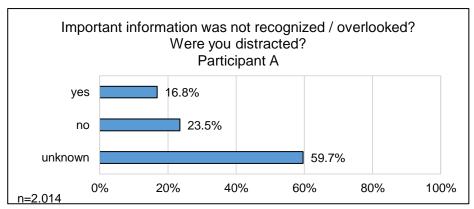


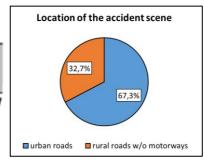

Research module (RM1): GIDAS-Analysis Results published

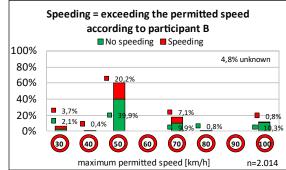

Methodology Results

Steps	Description
Analysis of specific accident types	 Why did the accident happen?
Analysis parameters	 Location Kind of road users according participation Speed limits Initial and collision speed Atmospheric conditions Contributing factors

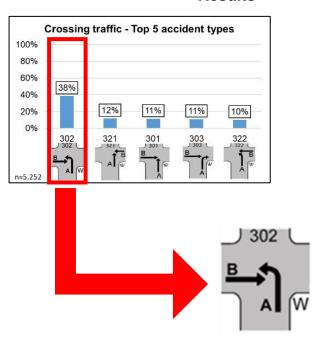


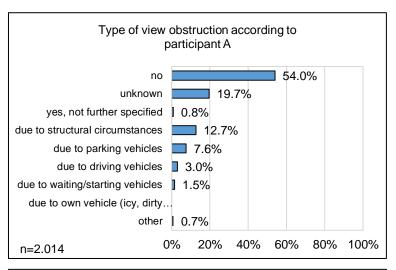


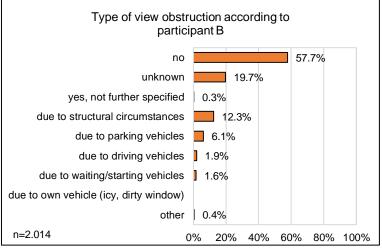

Research module (RM1): GIDAS-Analysis Results published


Methodology

Steps	Description
Analysis of specific accident types	 Why did the accident happen?
Analysis parameters	 Location Contributing factors Speeds + max. 25 further parameter






Research module (RM1): GIDAS-Analysis Results published

Methodology

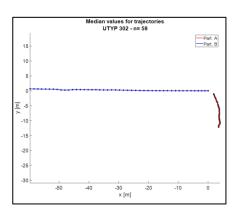
Steps	Description
Analysis of specific accident types	 Why did the accident happen?
Analysis parameters	 Location Contributing factors Speeds + max. 25 further parameter

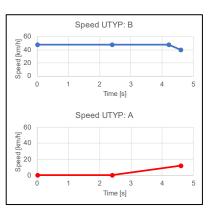
Research module (RM1): GIDAS-Analysis

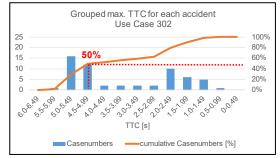
Results published

Methodology

Steps	Description
Analysis of specific accident types	 Why did the accident happen?
Analysis parameters	 Location Contributing factors Speeds + max. 25 further parameter

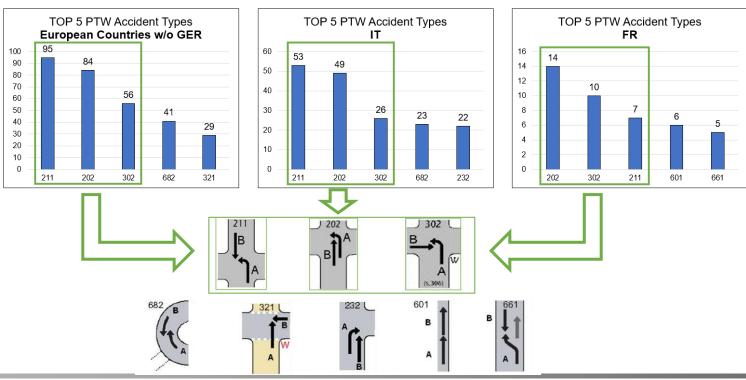



Research module (RM2): GIDAS-PCM-Analysis Results published


Methodology Results

Steps	Description
Analysis of specific accident types	 What can a test scenario look like, based on reconstructed and simulated accident data?
Analysis parameters	TrajectoriesSpeedsAccelerationsTTC

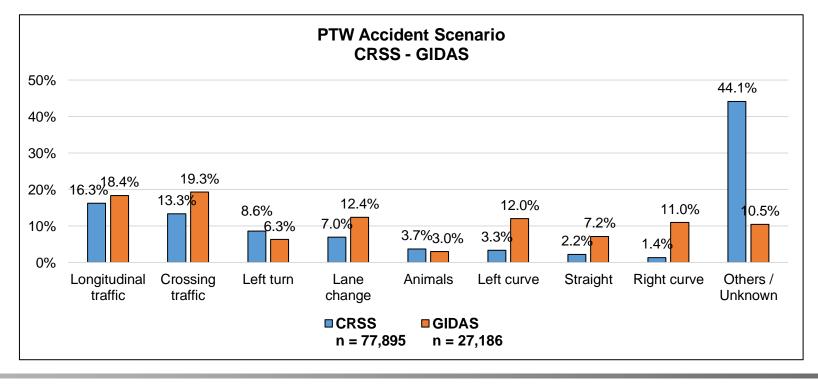
Crossing traffic - Top 5 accident types 100% 80% 60% 40% 20% 0% 0% 3821 301 303 322 321 301 303 322 322 B A W 302 321 301 303 303 322 322 B A W



Accident analysis of European Countries (IGLAD) Results published

Methodology

Steps	Description
Analysis of IGLAD data according to selected accident types	 Evaluation of most common accident situations How does the German accident data compare with accident data from other European Countries?



Accident analysis U.S. (CRSS)

Results published

Methodology

Steps	Description
Analysis of CRSS data according to selected accident scenario	 Evaluation of most common accident situations How does the German accident data compare with U.S. accident data?

3. Further steps

Extended analysis of U.S. data and analysis of Japan data Results not published yet

Methodology (U.S. data – extended analysis)

Steps	Description
Analysis of CRSS data according to selected accident scenario	 How does the German accident data compare with U.S. accident data?
Analysis parameters	 Location Kind of road users according participation Speed limits Atmospheric conditions Contributing factors

Methodology (Japan data – possible next step)

Steps	Description
Analysis of ITARDA data	 How does the German accident data compare with Japan accident data?

Thank you for your attention

contact@cmc-info.net

