MOTORCYCLE RIDER PROTECTION THROUGH ADVANCED DRIVER ASSISTANCE SYSTEMS

Dr.-Ing. Ulrich Zoelch, BMW AG, Germany

MOTORCYCLE RIDER PROTECTION THROUGH ADVANCED DRIVER ASSISTANCE SYSTEMS

MOTORCYCLE RIDERS ARE VULNERABLE ROAD USERS.

The Connected Motorcycle Consortium stands for an collaborative approach between motorcycles and passenger cars.

Because riders are Vulnerable Road Users, an overarching safety approach together with the automotive industry takes the interaction of passenger cars and motorcycles into account and provides benefit from technology transfer.

MOTORCYCLE SAFETY: ACCIDENT RESEARCH FINDINGS.

- Improving riding skills through continuous rider trainings is the foundation to avoid all types of motorcycle accidents.

MOTORCYCLE RIDER PROTECTION: ACCIDENT RESEARCH SHOWS THE NEED FOR ACTIVE SAFETY SYSTEMS IN PASSENGER CARS.

Influence of the car -
 accident scenarios from the projects MUSE, GIDAS, CMC

Ranking of severe collision type accidents:
In most cases the accident is caused by the car driver.

1) Crossing traffic
2) Left turn/ farside turn

Potential und Effectiveness

Active safety functions
show a high potential
at crossing and turning scenarios.

MUSE: Motorbike Users Safety Enhancement GIDAS: German in-Depth Accident Study CMC: Connected Motorcycle Consortium

- More than half of the collision accidents with vehicles occur at junctions, in vast majority the car driver is the main causer.
- BMW sees the highest potential for mitigation of severe accidents in active safety systems in cars for crossing and turning.

ACCIDENT RESEARCH BASED ON EUROPEAN DATABASES SHOWS THE MAIN TYPES OF ACCIDENTS.

Results from MUSE Project (2019)

CMFtap Use Case	1) Left Turn Across Path - Opposite Direction 16,03\%, U-Types 211, 281
CMC Use Case	2) Straight Crossing Path - Right Direction 12,84\%, U-Type 321 3) Left Turn Across Path - Left Direction 11,29\%, U-Types 302, 312 .
CMR Use Case	4) Straight Crossing Path - Left Direction 5,83\%, U-Type 301 \qquad \| ${ }^{6}$ 5) Follow-Up Driving 5,77\%: U-Types 602, 612, 603 \qquad
$\begin{aligned} & \text { TAP } \\ & \text { Use Case } \end{aligned}$	6) Left Turn Across Path - Same Direction 5,01\%: U-Types 202, 721,

- The most frequent collision accident types are left turn and turning/crossing.

DETECTION PERFORMANCE OF ONBOARD-SENSOR SYSTEMS ON MOTORCYCLES.

Motivation

- Validation of passenger car onboard-sensor systems regarding the detection performance on real motorcycles in addition to surrogates.

Test setup

- Several Tests were carried out in relevant scenarios for active safety functions with various vehicle configurations and different types of motorcycles.

Car to Motorcyclist Crossing

Car to Motorcyclist Front turn across path

Car to Motorcyclist rear moving powered two-wheeler

Car to Motorcyclist rear stationary powered two wheeler

Turn Across Path same direction

State-of-the-art sensor systems are able to detect real motorcycles and scooters.

LEFTTURN ACCIDENTS INVOLVING MOTORCYCLES AND CARS: ACCIDENT DATA ANALYSIS AND BMW ACTIVE SAFETY FUNCTION.

Front collision warning and braking function for turning with oncoming traffic

- Active safety function for turning situations in case of oncoming traffic
- The function reacts on oncoming motorcycles and cars up to 100 kph
- Basic configuration in the latest generation of BMW ADAS systems launched 2021

Data basis GIDAS Germany:

- Data freeze 7/2020
- Passenger cars (M1/N1) and motorcycles (> 125ccm) involved
- Accidents causing severe and fatal injuries (KSI)

Motorcycle target speed [km/h]																
	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	120
0	0,00\%	0,00\%	1,05\%	1,05\%	0,00\%	2,11\%	0,00\%	0,00\%	2,11\%	0,00\%	1,05\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%
5	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	1,05\%	1,05\%	1,05\%	1,05\%	0,00\%	1,05\%	0,00\%	0,00\%	1,05\%	1,05\%
	0,00\%	0,00\%	1,05\%	0,00\%	1,05\%	1,05\%	0,00\%	0,00\%	0,00\%	1,05\%	1,05\%	0,00\%	1,05\%	1,05\%	0,00\%	0,00\%
E¢ 15	0,00\%	1,05\%	2,11\%	2,11\%	6,32\%	3,16\%	2,11\%	0,00\%	1,05\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%
능 20	0,00\%	0,00\%	3,16\%	0,00\%	3,16\%	2,11\%	1,05\%	0,00\%	0,00\%	1,05\%	1,05\%	0,00\%	0,00\%	1,05\%	0,00\%	0,00\%
迷 25	1,05\%	1,05\%	1,05\%	2,11\%	2,11\%	1,05\%	1,05\%	1,05\%	1,05\%	1,05\%	0,00\%	1,05\%	0,00\%	0,00\%	1,05\%	0,00\%
\bigcirc	1,05\%	1,05\%	0,00\%	0,00\%	4,21\%	3,16\%	0,00\%	0,00\%	2,11\%	0,00\%	2,11\%	0,00\%	1,05\%	0,00\%	1,05\%	1,05\%
- 35	0,00\%	0, 00%	2,11\%	1,05\%	3,16\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%
¢ 40	1,05\%	0,00\%	0,00\%	0,00\%	0,00\%	1,05\%	0,00\%	1,05\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	1,05\%	0,00\%
U 45	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	2,11\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%
50	0,00\%	0,00\%	0,00\%	0,00\%	1,05\%	0,00\%	1,05\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%
55	0,05\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	1) 05%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%	0,00\%
	AP 20									W Sys 0\%					ro NCAP mated E Motorc	EB CMFtap: ergency Brake list Front turn across path

- There is a significant amount of severe accidents involving motorcycles oncoming with velocities up to 100 kph .
- The BMW active system is capable to cover >40\% more of severe accidents compared to the related Euro NCAP test scenario.

INCREASING MOTORCYCLE SAFETY ON PTW SIDE

UPCOMING ADVANCED RIDER ASSISTANCE SYSTEMS

DEVELOPMENT OF ADVANCED DRIVER- (ADAS) AND ADVANCED RIDER ASSISTANCE SYSTEMS (ARAS).

There is a time delay between the introduction of advanced driver assistance systems in passenger cars and their introduction in the motorcycle segment that allows the motorcycle industry to learn from automotive systems.

EXAMPLE OF UPCOMING ADVANCED RIDER ASSISTANCE SYSTEMS: FRONT-COLLISION WARNING.

Prewarning:

- Visual warning
- Haptic warning pulse draws the rider's attention to the imminent collision

TOP 10 ACCIDENT CAUSATION IN PTW SCENARIOS.

More and more accident types are addressed by Advanced Driver- and Advanced Rider Assistance Systems.

SUMMARY

- A safety approach of the Motorcycle Industry together with the Automotive Industry leads to benefit for both sides
- The highest potential for mitigation of severe accidents lies in Autonomous Emergency Braking functions at crossing and turning scenarios
- Sensor-based ADAS are state-of-the art technology in series production with proven reduction of accidents and are subject to continuous further development
- BMW has expanded the Euro NCAP requirements for its 'Car to Motorcyclist Front - Turn Across Path' function and covers more than 80% of left-turn collision accidents according to the GIDAS database
- Now this ADAS technology is being transferred by the Motorcycle Industry to PTW as ARAS systems
- More and more accident types are addressed by Advanced Driver- and Advanced Rider Assistance Systems

Thank you for your attention

