Connected Motorcycle Consortium
  • Home
    • Members
  • Safety
  • Applications
  • Basic Specification
    • Overview
    • Assessment
    • Use Case Specification
    • Application Specification
    • System Specification
    • Evaluation Report
    • Other standards
    • HMI
    • Roadmap
  • Research
    • Accidentology
    • Conspicuity
    • Rider Reaction Time
  • News
  • Downloads

News archive

Use Case Specifications published

24/1/2023

 
As a new addition to the ‘Basic Specification 1.0” set of documents, CMC has published use case scenario specifications derived from accident analysis.
The use cases describe some of the most common accident scenarios that result in PTW rider injuries: “Crossing” and “Left Turn”.
​
The document describes such important use cases, taking PTW-specific characteristics into consideration, for Advanced Driver Assistance Systems (ADAS) based on on-board sensor systems such as camera or radar, and Cooperative Intelligent Transport Systems (C-ITS) technologies.
Significant characteristics of PTWs are a basically smaller size and different driving dynamics compared to other types of vehicles.
This may end up in a variety of dangerous situations:
• Hidden behind another participant or object
• Delay of detection by other road users such as car drivers
• Hidden in the blind spot
• Speed and distance being easily misjudged
• Filtering through narrow space.
In such cases, a warning (or active intervention) could have important safety
benefits.

Picture
Time-To-Collision
The basic criterion to decide whether a conflict situation is arising or not, is the Time-To-Collision (TTC). TTC defines what time is left before the conflict emerges.
For the TTC calculation a path prediction is used assuming constant speed and trajectory for each participant at every point in time. If these paths cross and would lead to a collision, a TTC can be calculated.
​

“Crossing Traffic” scenario
The crossing traffic accident types according to the German In-Depth Accident Study (GIDAS) database describe a conflict between a road user (Participant A) who is obligated to wait and a road user (Participant B) entitled to the right of way.
This scenario may occur at junctions and crossings of roads, field or cycle paths, railway crossings as well as property exits or parking lots.
Ideally, Participant A should receive an advisory notification about the oncoming Participant B. In 62% of the analysed cases, a TTC calculation earlier than TTC = 2.6 s is possible and gives Participant A time to decelerate and let Participant B pass. If Participant A would start accelerating anyway, an active intervention combined with an earliest possible warning would mitigate the situation.
Picture
“Left Turn” scenario
The left turn scenario is described by two or more road users in an oncoming traffic situation, with one of the participants intending to turn left. The one trying to turn may misjudge the speed and distance of or does not even recognise the one coming straight at all.
The left-turning vehicle as main accident causer will be addressed. According to the GIDAS database the median differential speed between the two vehicles involved is 92 km/h. Furthermore, in 50% of all analysed cases, a TTC calculation was not possible earlier than TTC = 1.5 sec. Given these boundary conditions, an active intervention would have the highest expected safety benefit, followed by a warning with the aim of increasing driver/ rider situation awareness and stop turning.
Providing an advisory notification will likely not prevent the accident due to the limited time resulting from the accident configuration.
Picture
For more info please visit our web page about Use case specification here.

White Paper regarding Rider Reaction Time published

16/11/2022

 
A first empirical study regarding PTW rider reaction times towards a visual warning has been published by CMC. The results are remarkable: In comparison to driver reaction times in passenger car studies, more missed warnings were observed, reaction times seem longer and reaction time distributions seem wider.
 
Background
C-ITS systems that warn the motorcycle rider of an upcoming danger only work if the rider is interpreting the warning correctly and reacts accordingly. So far however, there is little knowledge about how long a rider reaction towards a warning takes.
 
What has been investigated
​The whitepaper describes a dynamic motorcycle riding simulator study by CMC, which investigated motorcycle riders’ reaction times towards a warning on the dashboard.
The dashboard warning was a generic visual warning which can act as a benchmark to improve upon in the future.
Reactions in an urban and a rural scenario were tested. These did not include imminent crash warnings, but advisory warnings with 3 seconds between warning onset and the potentially critical situation becoming visible.
Picture
Setup of the simulator that was used in the study
Usability
The results of this study can be used in the following ways:
1.To better estimate for which C-ITS scenarios, running on a PTW, a purely visual warning could be appropriate, and for which ones not.
2. To act as a benchmark: Any OEM’s individual HMI warning solution should result in faster reaction times and less missed warnings in this test setup than the ‘conservative’ rider notification assessed in this study.
3. To clarify to which extent results from passenger car research are applicable to the PTW domain and to serve as an input for rider behaviour models in simulations which are e.g., necessary to estimate the effectiveness of various (C-ITS) safety applications.
 
The following interesting outcomes could be observed
• In 16.7% of cases, the purely visual warning was not recognized at all.
• Among the other cases, the average time between onset of the notification and gaze towards the dashboard was about 1 second already.
• The average time between notification onset and ‘throttle off’ was about 2 seconds.
• The average time between notification onset and ‘initiate braking’ was about 2.5 seconds.
• The mentioned reaction times were shorter in the urban scenario compared to the rural one, where the situation was perceived as less critical.

 Favourable evaluation among participants
Another interesting observation could be that, in the more time-critical urban scenario, all riders who had seen the warning, initiated braking before the obstacle became visible. In combination with the favourable evaluation of the test riders after the experiment, this shows a good potential for the safety benefit of C-ITS applications.
 
The whitepaper is available for download here
Picture
The test course had a total length of about 37 km and consisted of different modules on rural and urban roads

Advanced Driver Assistance Systems: do they properly recognise motorcycles?

6/9/2022

 
Powered Two Wheelers (PTWs) are often not seen by other road users, or their speed and distance are misjudged. "Sorry mate, I did not see you" is a typical reaction in case of accidents.
Advanced Driver Assistance Systems (ADAS) support passenger car drivers to avoid hazardous situations in many traffic scenarios and have a high potential to decrease the number of collision accidents with motorcycles.
These systems have strongly evolved in recent years, and as drivers become more comfortable with ADAS, they tend to rely more and more on this technology and become less attentive to the driving task. But do these systems warn properly in case of PTWs nearby?
Driven by this thesis and concerned by the potential perception failure of PTWs, the Connected Motorcycle Consortium conducted an in-depth study on PTW Conspicuity.

Picture
"Sorry mate, I did not see you"
Importance of PTW conspicuity
Motorcyclists are considered as Vulnerable Road Users (VRU) by the EU.
They require extra attention by other road users, to be seen and recognised.
In case of passenger car ADAS, reliable detection of PTWs is essential to avoid car-PTW collision accidents and to reduce the number of motorcyclist fatalities.
In recent years there has been a continuous decrease in fatal car accidents in Europe. This has various reasons: not only changing regulations concerning speed limitations, obligations for safety equipment and improving vehicle technologies, but also the support of ADAS could avoid severe accidents. However, since
motorcyclists are fast-moving targets and provide a small reflective surface for radar sensors, it can be more difficult for passenger car ADAS to detect them.
The Connected Motorcycle Consortium decided to investigate the role and efficiency of ADAS in detecting motorcycles and avoiding accidents.

Whitepaper
In the whitepaper "PTW Conspicuity", an investigation into the status-quo of the detection of PTWs by passenger car ADAS is presented. In addition, various methods to improve the conspicuity of PTWs are evaluated.
The focus is on the analysis of current research, regulations, academic papers, technical reports, and other studies that have already dealt with the conspicuity of PTWs. The outcomes show that the detection of PTWs is quite a challenge for these systems indeed.
The whitepaper can be accessed here.
Picture
A motorcyclist hidden behind a passenger car is hard to detect

Rider reaction time investigated

12/4/2022

 
The general aim of the Connected Motorcycle Consortium (CMC) is to make Powered Two-Wheelers (PTW) part of the future connected mobility. To achieve that, CMC is not solely focusing on technical aspects of this process, but ensures the early integration of the rider.

What is a suitable warning timing?
​
For instance, any assistance system that does not intervene automatically requires a reliable communication from the PTW to the rider (i.e., any kind of warning) to ensure that he or she can take appropriate action. Currently, there is no universal and reliable PTW-rider specific information regarding a suitable warning timing, because we lack knowledge about riders’ detection and processing capabilities of a warning while riding. Furthermore, these capabilities may be influenced by a lot of different factors, such as vehicle ergonomics, rider workload etc. Yet, the decision on warning design and timing is vital to ensure a safety benefit of the application, to reduce the number of perceived false positive alarms and increase acceptance of the application among riders.
Picture
DESMORI dynamic motorcycle riding simulator at WIVW

​Study by means of an advanced riding simulator
To address this important aspect, CMC investigates PTW rider-specific reaction times towards warnings in a user study on a riding simulator.
This DESMORI dynamic motorcycle riding simulator at WIVW is equipped with a mockup mounted on a 6 degrees of freedom hydraulic platform for vestibular feedback. The mockup enables the rider to interact with fully realistic controls, such as usual handlebar, brake lever/ pedal, clutch, gear selector, etc. Helmet-integrated headphones or shakers attached to the individual helmets are used for auditory feedback. The rider steers the motorcycle through a combination of steering torque (with torque feedback up to 80 Nm) and induced roll torque by shifting his/ her weight. The cylindrical screen enables 220° horizontal field of view. The instrument cluster – same as the mirrors – is a TFT screen which permits to flexibly provide various types of visual warnings.

Emperical results
This test environment allows to analyze rider behavior in scenarios, which were previously identified by CMC’s Feature Team Accidentology, in a safe and controlled environment with the major aim to provide empirical evidence for warning design, warning timing and the creation of rider behavior models that serve as input for the safety applications.
Concretely: In order to design those applications, you would need to know how long it takes before a rider realises that there is a warning. For example, if noticing the warning already takes one second, and then the rider needs another second before actually taking avoiding action, the warning needs to be issued by the application already two seconds before the minimum required ‘technical’ time & distance needed to avoid the collission – a very critical path to make some applications work.
Picture

CMC at the ITS world congress

16/12/2021

 
With over 13000 visitors from the ITS* community, from industry experts to policy makers, the ITS World Congress is the largest of its kind. Focusing on future smart mobility and the digitalisation of transport, the event showcases the latest innovations and technologies regarding ITS.
Apart from a large exhibition area, part of the event are live, interactive and thought-provoking sessions where industry experts present the latest developments. One of these sessions included a presentation from the Connected Motorcycle Consortium.

Motorcycles – Why they fit in automated and connected traffic
CMC explained how powered two wheelers are part of urban mobility and provided insights from the latest accident data analyses in Crossing Traffic and Left Turn scenarios.
With the presentation, CMC had three goals in mind:
  • To raise Awareness – that motorcycles have a special role in connected traffic
  • To provide Insights – how accident analysis can help us develop technical solutions
  • To get Recognition – that motorcycle safety could benefit a lot from ITS solutions.
Picture
Motorcycles in automated and connected traffic

​On top of that, the congress provided the opportunity to raise awareness that the motorcycle industry is working together and joining forces in order to enhance rider safety.
The CMC Basic Specification and its set of documents were introduced, including the roadmap towards the future.
https://www.cmc-info.net/basic-specification.html

Time To Collision (TTC)
The topic of ‘Time-to-collision’ was illustrated based on the two mentioned scenarios, where the Left Turn scenario proved much more of a challenge compared to the Crossing Traffic scenario, in terms of available reaction time.
According to a study by Breuer et al.**, a reaction time of around 3 or more seconds is required, but especially with the Left Turn scenario it only allows few cases matching this criteria. The Crossing Traffic scenario, on the other hand, shows a majority of cases within this time and therefore a promising potential for avoiding accidents.
Picture
Analysis of Time To Collision in Crossing Traffic (302) and Left Turn (211) scenarios

​Way forward

CMC announced to further investigate motorcycle accidents and further identify the
important scenarios.
On top of that, a strengthened collaboration with industries / stake-holders (car, truck, infrastructure, etc.) will be key to achieve further progress in motorcycle safety.
And finally, it will be important to develop ITS specifications which are suitable for motorcycles from an interoperability, affordability and mountability point of view.
A copy of the presentation can be found in the downloads section of our website:
https://www.cmc-info.net/downloads.html

* ITS = Intelligent Transport Systems
** Source = J.Breuer, S Gleissner: Neue Systeme zur Vermeidung bzw. Folgenminderung von Auffahrunfällen | VDI-Berichte #1960, pg 397 | VDI Verlag Düsseldorf 2006

Better understanding of how accidents happen

23/9/2021

 
​To understand how and why motorcycle accidents happen is the basis for accident prevention. As CMC points out, when motorcycles ‘talk’ to cars, a certain amount of collisions between cars and motorcycles may be avoided. In particular, road crossings are most critical places, where often a car driver oversees the oncoming motorcycle on the priority road.
Picture
Database analysis for definition of test cases
With the support of VUFO GmbH, CMC has analysed real, reconstructed accidents based on a simulation database (GIDAS-PCM).
​Out of these accidents a ‘prototype’ average scenario is used. On the one hand to better understand the accident sequence, on the other hand, to derive test scenarios based on real accident data in order to develop and test future functionalities, technologies and connected systems.
One of the frequent cases of the scenario group "Crossing traffic" (so called accident type 302) was analysed. In this accident type, participant A (usually a car) wants to turn left and disregards his obligation to wait. Involved party B (usually a motorcycle) approaches from the left.
Picture
Picture
Figure 1: Accident type 302 - Crossing traffic with motorcycle approach from the left;
Overview of trajectories.
Vehicle-to-Vehicle connectivity allows for more reaction time for the motorcycle rider
Based on the GIDAS-PCM, the trajectories, as well as the manoeuvres of both participants with their speeds and decelerations has been analysed and evaluated in a time-dependent way. The average result for all investigated cases is illustrated in Figure 2 with the corresponding velocity profiles.
The good news: V2V connectivity shows a potential to avoid such accidents.
The car driver (Participant A) starts accelerating already at 2,4 seconds after he has stopped and checked whether he can continue his manoeuvre. At the same time, the motorcycle rider (Participant B) obviously did not realize the car started to move. Only at 0,4 seconds before impact, the rider starts to brake.
​In contrast, with a Vehicle-to-Vehicle communication, the motorcycle rider could have been informed well 2 seconds ahead of the possible impact to perform braking.
At the same time, also the car driver will be alerted as soon as he starts accelerating and has time to stop his manoeuvre.
Picture
Figure 2: The average result for all investigated cases
Input to further research
This example described the average situation, but in reality the time sequences have a certain spread which is also analysed by our researchers. Those accident research findings allow developing a test scenario, which can be used for system tests in the simulation and for real field tests. In addition, the evaluated accident data could determine system limits and to identify warning times for riders/drivers.
CMC will investigate further relevant accident types in order to provide even better support for riders/drivers in critical scenarios with systems in the future.

Computer simulation for safety

21/5/2021

 
CMC work shared by increasing number of members
Several companies, universities and associations have decided to continue
contribution to CMC ‘Next’. Ducati is now the seventh motorcycle manufacturer to
support the consortium as Regular Member. Also academia and associations
confirmed their continuous membership, such as ACEM, FIM, IKA University
Aachen, Technische Hochschule Ingolstadt, Würzburg Institute for Traffic Sciences
GmbH and VUFO GmbH.
New: Computer simulation of motorcycle accidents
The first work projects for 2021 have been started. VUFO GmbH is currently
scrutinizing the most frequent accident scenarios. Intersection collisions are the
predominant scenario, where usually the car driver does not see or perceive the
oncoming motorcycle. So these key scenarios are investigated more deeply now.
The GIDAS database provides the basis for the study. Among the databases on
accidents that are available worldwide, this German database is one of the most
detailed ones available. Not only does it include the basic items like the scenario,
impact, speed, etcetera, but there are also descriptions to understand the situation,
which are acquired through interviews. "As basis for our application definitions this
is very useful.” says Masaru Mamiya (Suzuki), Leader of the Accidentology Expert
Team. “Of course, we know this is based on German accidents only and we will
have to check differences with other countries or regions too.”
These detailed reconstructed accidents are analysed with a special software to
better understand their dynamic, trajectory, speed, etc. in detail. With this
methodology we could generate use cases for a testing environment. In a later
step it is planned to make different variations to answer several important
questions. For example: what would have happened if participants braked earlier?
Can we compare different trajectories of the same accident?
The purpose of this is to find common denominators in these different scenarios
and simulation that can help our technical teams to consider possible solutions.
These solutions may include the sender (motorcycle) side, for example by means of
improved positioning accuracy or path prediction; and also the receiver (usually
car) side, for example by improved warning strategies.
Picture
Most collisions happen between cars and motorcycles. However, during the summer season, tractors bear risks to motorcycle riders as well.
Difference between car and motorcycle scenarios
“We need to understand in detail what is going on during collisions. Speeds,
trajectories, vehicle movements and so on, will help us to define better
requirements for safety applications”, says Yasuhiro Okada (Honda), Leader of the
Applications Requirement Expert Team.
CMC is often asked where the ‘technical’ difference lies between accidents where
motorcycles are involved compared to accidents between cars only. Therefore
particular attention is paid to the difference of motorcycle collisions compared to
car-only collisions. For example, it may happen that the impact speed at accidents
between cars and motorcycles is relatively high because the car driver had not
seen the motorcycle and did not apply any braking at all. In that case, an
application based on car-only accident studies may have less-than-ideal
parameters to address accidents with motorcycles involved.
CMC expects the first results of the computer analysis by the middle of this year.
Then our expert teams will follow up with their work on technical solutions in order
to improve applications that may help to avoid accidents.

A wider scope for cmc 'Next'

1/2/2021

 
BMW Motorrad, Honda Motor Co. Ltd., KTM AG, and Yamaha Motor Co., Ltd. signed an agreement in December 2020 to continue cooperation from 2021 onwards to further enhance motorcycle safety and assure that motorcycles maintain their role in future mobility. Suzuki Motor Corporation and Triumph Design Ltd. expressed their intention to support the common activity in CMC ‘Next’.

The approach is widened and the work will include investigating conspicuity of motorcycles by Advanced Driver Assistance Systems (ADAS). This ‘system’ approach looks at creating synergies between on-board sensor systems and connectivity.
​
CMC members consider safety as a goal for the industry and are in favour of a strategy on improving motorcycle rider’s safety.
Picture
Connectivity between vehicles can inform drivers about motorcycles to avoid they are being 'overlooked'
CMC Basic Specification as milestone
Since its establishment in 2016, CMC has worked on a Basic Specification for motorcycle specific V2X* connectivity systems. CMC has launched this ‘CMC-Basic Specification’ on December 11th, 2020.
The Basic Specification is a first step to describe the function of motorcycle V2X systems.
In a further step beyond 2020, the participating manufacturers will define further essential functional requirements to standardise in detail.
CMC Basic Specification is further explained and documents are available for download on the CMC website.
The website is also recently updated with various videos that contain examples of important scenarios, to showcase the advantages of connectivity between vehicles. https://www.cmc-info.net/safety.html

CMC 'Next' increases cooperation with car & other vehicle industries
A further crucial step for CMC ‘Next’ after 2020 is the cooperation with the car industry and other vehicle manufacturers since motorcycles shall communicate in a standardised way.
Modern cars are increasingly equipped with on-board sensor systems (radar, camera, etc.) and driver assistance systems. These vehicle systems need to include motorcycle requirements in order to enhance their safety effects in case of mixed traffic with motorcycles.
CMC believes that tailored motorcycle/car scenarios and tests need to be developed and standardised.

The new organisation has started its activity in January 2021. The six motorcycle manufacturers encourage other motorcycle manufacturers, suppliers, car manufacturers and other related organisations to join the cooperation to further pursue the deployment of new elements for motorcycle safety.

*V2X in terms of wireless communication technology stands for ‘Vehicle-to-
Everything’, including ‘Vehicle-to-Vehicle’ and ‘Vehicle-to-Infrastructure’.
*The term ‘motorcycle’ in this text covers all types of Powered Two Wheelers
(PTW).

Comments at the launch of CMC's Basic Specification

18/12/2020

 
From the European Commisson
"We really want to make a difference".
Claire Depré, Head of Unit, Sustainable & Intelligent Transport, DG Mobility and Transport, European Commission, states: "I am really grateful to CMC for the work carried out, for bringing much more innovation and contributing to the safety of the overall transport system.”
​Have a look at the 5-minute video where she emphasizes the Commission's strategy towards the future, including 'Green Deal' and 'Vision Zero' and the importance of Vehicle-to-Vehicle communication therein; as well as the appreciation for the motorcycle industry to be involved in this.
From the CMC president 
​
"A great stepping stone".
Yoshishige Nomura, president of CMC in 2020, reminds that CMC is now composed of more than 20 organisations including OEMs, suppliers and research institutes and that the Basic Specification for motorcycles was made by the joint work of all members. He speaks out his appreciation for the cooperation that was received from all other stakeholders including the car industry. He also talks about the expectations for the future; Have a look at his 3-minute video.

CMC launches Basic Specification

14/12/2020

 
Founded in 2016, CMC aims at joining forces between motorcycle manufacturers, suppliers, research institutes and associations, to make motorcycles part of the future connected mobility.
Until then, C-ITS (Cooperative Intelligent Transport System) specifications for passenger cars have not sufficiently taken motorcycle specific safety factors and challenges into consideration.
An important goal therefore set out by CMC was to define a first Basic Specification for motorcycles to connect and ‘talk the same language’ to other vehicles or infrastructure by means of wireless communication.
This is being achieved with the official publication of a set of documents to address various topics related to the introduction of C-ITS for motorcycles.
​These documents are now available for download on the CMC website.
Picture
The chapters that compose the CMC Basic Specification
Importance of connectivity for motorcycle safety
C-ITS allows road vehicles to communicate with each other, with roadside infrastructure and with other road users. C-ITS has a high potential, especially for motorcycles, to prevent accidents before they occur.
Accident analysis shows that more than half of collisions with motorcycles are caused by the other vehicle driver. Not seeing the motorcycle coming, or misjudging distance and speed, are primary accident causes. A closer look at accidents with motorcycles reveal that 72% of the drivers’ failures are because the vehicle driver did not see the motorcycle. This perception failure may be summarized in the statement often heard after such crashes: ‘Sorry, but I didn’t see the motorcycle at all’. 
CMC believes that such accidents could be mitigated by future technologies, which will enable motorcycles to ‘talk’ to cars and other vehicles. Drivers may be alerted in case critical situations in traffic are foreseen by vehicle connectivity systems.
The integration of motorcycles in the C-ITS ecosystem will bring significant safety benefits. ​CMC has been working on applications in which connectivity would allow to warn drivers and riders of potentially dangerous situations.
Picture
Example: Left Turn Assist could warn about approaching motorcycle
Towards the future: CMC 'NEXT'
Following a Memorandum of Understanding signed in April, BMW Motorrad, Honda Motor Co. Ltd., KTM AG, Yamaha Motor Co. Ltd, have signed an agreement beginning of December to continue their efforts on motorcycle safety and connectivity in a next step named CMC ‘NEXT’. The scope is wider and the motorcycle experts will be looking at further improvements of the specification while at the same time taking account of new functions supported by on-board sensors both in cars and in motorcycles.
​
* The term ‘motorcycle’ in this text covers all types of Powered Two Wheelers (PTW).

CMC finalising Basic Specification for motorcycle C-ITS

22/10/2020

 
CMC have been working hard to achieve the goal being set out in 2016:
To have a ‘Basic Specification’ for C-ITS systems for motorcycles ready for publication by the end of 2020.
All for the sake of improving rider safety.
In the time leading up to this, studies have been conducted, protoype bikes have been built and evaluated, and meetings have been held with various stakeholders.
All of this culminated in a set of (currently still draft) documents that address various topics related to the introduction of C-ITS for motorcycles.
Picture
Contents
The main issues in the ‘CMC Basic Specification’ are the following.

* Studies of motorcycle accidents and potential safety benefits of C-ITS were conducted and described in an “Assessment of C-ITS application potential”.
* The C-ITS applications themselves are defined in “Application Specification” and “System Specification” documents.
* CMC has also prepared prototype C-ITS vehicles and conducted evaluation tests to verify the system, applications and parameters of them. The test results are summarised in an “Evaluation Report”.
* The CMC Basic Specification is strongly related to other C-ITS standards, such as the Basic System Profile defined by the CAR 2 CAR Communication Consortium.
Therefore, a “CMC position towards other standards” document is created to describe the points that need to be adapted from the original standards in order to accommodate motorcycles.
* Furthermore, CMC has developed a strategy for the implementation time-plan of the different C-ITS applications, related to the extent in which they contribute to the rider safety as well as their technical challenges. To this purpose, an “Application Roadmap” has been defined.
* CMC also investigated on the topic of Human Machine Interface design and concludes that an alignment in HMI design will further enhance rider’s safety as described in the “HMI guideline”.
Picture
Prototype testing

CMC will continue these activities in order to further develop and enhance the CMC Basic Specification and to communicate with C-ITS stakeholders so that C-ITS technology for motorcycles can be widely accepted by the C-ITS community.

Cmc members sign 'memorandum of understanding'

29/4/2020

 
Motorcycle manufacturers investigate further cooperation beyond 2020
On April 28th 2020, BMW Motorrad, Honda, KTM, Suzuki and Yamaha Motor signed a new Memorandum of Understanding to start discussion to continue their cooperation through 2020 and beyond. The goal is to further enhance rider safety by assuring that motorcycles and scooters maintain their role in future mobility scenarios and are considered an integral part of the connectivity between vehicles.
The signatories encourage other car and motorcycle manufacturers, suppliers and related organizations to join the cooperation and to pursue further improvements in motorcycle safety.
Picture
Background
Founded in 2016, CMC has aimed to integrate motorcycle-specific safety aspects into connectivity technology (C-ITS, Cooperative-Intelligent Transportation Systems), both on the hardware side as well as on the software side. Based on accidentology data, a roadmap towards the future was defined, which, in 2020, is expected to culminate in the deployment of a set of ‘Basic Specifications’ to achieve standardization between manufacturers. With this foundation laid, the path now lays open for the next phase in development, including more detailed specifications and more concrete application definitions and functional requirements. Furthermore, CMC sees the need for closer collaboration with the automotive industry, in order to assure the efficiency of automotive advanced driver assistance systems (ADAS) with respect to motorcycles as well.

Statement from CMC President
Mr. Yoshishige Nomura, (Operating Executive of Honda Motor Co. Ltd.), current President of CMC, says:
“CMC has been working on creating common specifications and standards and sharing information with car manufacturers and related organizations to accelerate the development in motorcycle safety. We are planning to issue a set of Basic Specifications at the end of 2020.

We have reached a mutual understanding that it is necessary to assure the presence of motorcycles in the future mobility society through connecting via C-ITS to as many cars and other vehicles as possible. Our aim is the further expansion of C-ITS together with car and other vehicle industries and we expect that the collaboration with car manufacturers and other related organizations will be accelerated through our initiative.“

CMC conference highlights the role of motorcycles in future mobility

17/12/2019

 
Motocycle industry VIP's come together to discuss future automation
The motorcycle industry may play an important role in the mobility of the future. Mr.
Yoshige Nomura, Operating Officer Motorcycles from Honda Motor Co. Ltd. and
new President of CMC highlighted the opportunities and the challenges of the
industry in the annual CMC conference, where CMC member’s top management
gathers every year. Philipp Habsburg, CTO of KTM AG who hosted the event at
their recently opened ‘Motohall’ at Mattighofen, Austria believes that CMC has
become a ‘brand’ in the automotive sector and a platform to challenge even a wider
variety of future challenges.
PictureSpeech by CMC president Mr. Nomura

Demonstration in 2020 of working systems in action
The goal of CMC to define a Basic Specification for Motorcycle ITS is on its way
and the Consortium is planning a safety conference in 2020 to demonstrate the
results of their work. CMC believes that connectivity is a major contribution to
safety for motorcyclists. Since most accidents happen due to perception failure
from other vehicle drivers, connected services will warn drivers and riders of critical
situations. To foster deployment of motorcycle ITS systems, CMC proposes
standards and a technical framework.

Technical challenges
Masaru Mamiya from Suzuki, who leads CMC’s Unification and Interoperability
Group, sees need for motorcycle specific standards and specification, since
motorcycles have a fundamentally different driving dynamics compared with cars.
Keynote speaker Peter Meckel from Asfinag in Austria, representing the European
C-Roads consortium promised that road operators will supply information to road
users including motorcycle riders. The traditional information via radio, Apps or
navigation systems is not enough to boost safety. Information should be in real time
and only a hybrid approach using ad hoc short-range communication together with
long range communication as a mix of traditional and new technologies will provide
real steps forward for road safety.
Picture
The CMC Conference participants

Today's sensor technology not ready for automated traffic

Christof Lischka, Executive Vice President Development and Felix Deissinger Head
of Motorcycle Safety, both from BMW Motorrad pointed out the challenges powered
two wheelers will face when road traffic will increasingly be automated. Today’s
onboard sensor systems for example, still are not fully capable to recognize
motorcycles under certain situations.

More future challenges ahead
Takuya Kinoshita CEO of Yamaha Motorcycle Operations at Yamaha Motor Co. Ltd.
in Japan and previous President of CMC believes that the industry needs to stretch
out beyond its own borders and work with all mobility stakeholders to safeguard
motorcycles into a new area of mobility. CMC needs to cooperate with other
consortia such as Car2Car Communication Consortium or 5G Automotive
Association to make sure requirements of Powered Two Wheelers are included in
future standards.
Picture
Handover of the presidency from 2019 president Mr. Kinoshita (right) to 2020 president Mr. Nomura (left)

Test of motorcycle use cases

10/9/2019

 
Over the summer CMC performed a comprehensive test of a number of important
C-ITS safety applications for motorcycles at the Aldenhoven Testing Ground near
Aachen/Germany. The purpose of the test was to evaluate possible accident
scenarios between a motorcycle and a car and to check the system settings in
order to best inform the driver and rider how to mitigate dangerous situations.
Picture
Preparations for the CMC test

Motorcycle approaching information is a key safety feature

A typical situation that motorcyclists experience is when a car approaches from a
side road on to the main road where the motorcyclist has priority. It can often
happen that the car driver slows down but doesn’t completely stop his vehicle. In
which case the motorcyclist is unsure, if the car driver has seen/recognised him
and the question is whether the rider should brake, and possibly risk another
dangerous situation for vehicles following him? To help avoid such critical
situations, the motorcycle and car communicate to each other and the car driver
receives an indication/warning message to watch out for the motorcycle on the
priority road.
In order to make this happen, cars and motorcycles have to exchange standardized
messages, called CAM and DENM messages which includes comprehensive set of
information about vehicle status, such as speed, direction and/or the braking
situation. To enable this communication to take place, CMC specialists have
programmed software and tested it in laboratories. Verification however needs to
be done in ‘real world’ scenarios and the Aldenhoven testing ground provides
perfect surroundings with a variety of road layouts to check the systems.
Picture
Typical scenario : the car driver might not see the motorcycle

Warning timing is crucial

The precise time when actually to warn the vehicle users is a highly important
factor. In other words, when has the motorcycle rider or car driver passed a critical
threshold and when is it required to show the warning in both the motorcycle and
the car? If warnings come too early, confidence and acceptance of the system will
be undermined. If a warning comes too late, everyone can imagine the
consequences! CMC tested several scenarios over a number of speeds to validate
the assumptions made in the laboratory. Calibrations to the systems were done on
the spot and setups were improved during the testing sessions.
Picture
With connectivity the car driver gets a warning on the dashboard

EEBL – brake light indication very useful

The so called EEBL (Electronic Emergency Brake Light) application was also tested
in Aldenhoven and proved being very useful. With this system, the motorcycle rider
receives information on the dashboard when another vehicle is undergoing hard
braking and this is particularly useful if there is no direct line of sight, for example if
a truck is between the braking vehicle and the motorcycle. This way the rider can
be warned earlier, to avoid rear end collisions.
CMC added important fine tuning to the algorithms being developed and optimized
the best suitable timing for the warning to be issued to the motorcycle rider.

Antenna topics and communication

1/6/2019

 
Communication in two ways
Communication is a vital part of C-ITS. Motorcycles need to be able to ‘talk’ to other vehicles digitally. And also verbal communication plays a role: during the development of C-ITS, it is the people who need to talk and to coordinate what issues motorcycles and other vehicles should communicate about.

Digital communication: Antenna is the key
For cars, antenna performance criteria have already been discussed and developed since a long time. For motorcycles however, this is not so easy: due to their particular vehicle dynamics, size and layout, the antenna development poses quite a challenge. The Connected Motorcycle Consortium started to conduct tests in special measurement chambers and is also verifying the test results in real riding
conditions on the road.
Picture
Discussion on antenna placement
Antenna placement
The ideal position of a motorcycle antenna is a location on the front of the motorcycle. Most critical situations occur along the direction of riding and this is when ITS communication is needed to warn other vehicles of a motorcycle in critical range. However, due to leaning angle of motorcycles while cornering, the antenna performance decreases with amount of lean angle. The corridor of antenna
transmission becomes narrower. This results in a weaker transmission of signals to each side of the motorcycle. Accident scenarios based on studies carried out by academia and CMC will determine the threshold of such decreasing performance. The requirements currently worked out by CMC experts will be included in the CMC Basic System, which will describe CMC standards for motorcycle ITS systems.
The tests luckily showed, that the body of the rider him/herself has less influence in shielding antenna transmission than expected. Nevertheless, transmission of signals backwards still pose a challenge. Equipment such as luggage or side cases will influence antenna performance. And CMC is making studies how to ensure the motorcycle to transmit messages to avoid rear end collisions.

Verbal communication: talking to people
To be able to network with influencers like legislators, politics and automotive industry, and to make them aware of the current work in CMC, verbal communication is still important. Therefore CMC participates to key congresses around the world.
Picture
CMC spokesman Hennes Fischer at ITF in Leipzig
The recently held International Transport Forum in Leipzig was a good opportunity to address the world’s leading decision makers, amongst them road and traffic administrations, NGO’s, the WHO, politicians and user organizations, including FIA & FIM.
CMC spokesman Hennes Fischer participated in a round table discussion organized by IMMA, the global association of motorcycle manufacturers, to provide insights about the specific issues on powered two wheelers.
Next up is the 13th ITS European Congress in Eindhoven, the Netherlands, which will provide another possibility to explain challenges and opportunities of connected motorcycles to important stakeholders in the C-ITS world. On Wednesday 5th June, 13:00-14:00 hours, CMC will present a paper there: “CMC is paving the way for motorcycle connectivity”. For more information see the organizer webpage: https://2019.itsineurope.com/
This way, the C-ITS industry can take the peculiarities of motorcycles better into account when preparing for the future!

Accurate localisation for motorcycles remains a challenge

11/4/2019

 
Real-life tests conducted
Motorcycles are usually less than 1 metre wide and their position within their lane is an important information to determine critical situations. In other words, it makes quite a difference if a rider keeps left or right in his lane. The Connected Motorcycle Consortium conducted several real-life tests both on public roads and in confined test environments at Technische Hochschule Ingolstadt (THI).
These tests were done with today’s GNSS localisations systems* in order to verify performance of these systems and to deduct CMC requirements for future safety applications on motorcycles.
* GNSS stands for Global Navigation Satellite System. Examples of such systems with global coverage are GPS from the U.S.A. and GLONASS from Russia. By 2020, BDS from China and Galileo from the E.U. should be operational as well.
Setting up the test units
 Test outcomes
As to be expected, currently used automotive satellite systems do not provide enough accuracy on lane specific positioning. Furthermore, it turned out that the calculation of the motorcycle trajectory under weak satellite signals – the so-called ‘dead reckoning’* - is more demanding compared to cars.
* In navigation, “dead reckoning” is the process of calculating the current position by using a previously determined position, or fix, and advancing that position based upon known or estimated speeds over elapsed time and course.

Parameters not usable as in case of cars
While for cars, steering angle and differential speed of wheels are key information to calculate a trajectory, for motorcycles, both are not available and not really useful. The differential speed of a motorcycle’s front and rear wheel does not indicate any directional change. Moreover, motorcycles do not have steering angles, which would allow calculation of their trajectory, since motorcycles are steered by inertia. Leaning angle, speed and most important centre of gravity are key parameters. Particularly centre of gravity is very difficult to measure, since the rider and his positioning on the bike have a massive influence on it.
Picture
Testing in action
Common standard needed
Raphael Riebl from THI is convinced: “We still have lots of work to do to solve the ‘dead reckoning’ issue for motorcycles. Furthermore, it is essential, that we do this together in CMC with all manufacturers involved. Only if we can decide on common standards and test methods, we can assure the same dependable level of accuracy in positioning of every motorcycle on the road.”
He contemplates: “Moreover, it is understood that only then we can go ahead with actual safety critical applications. So as an important next step we have to define a motorcycle-specific test scenario which includes the requirements for dead reckoning."

CMC gets interest from press and public at Intermot

17/10/2018

 
Picture
CMC booth at Intermot, showing car and motorcycle communicating to each other directly
This international motorcycle show provided an opportunity for the Connected Motorcycle Consortium to demonstrate what is possible with ‘wireless’ safety applications for motorcycles.
“We were interviewed by several magazines and TV channels”, says Hennes Fischer, responsible for Promoting and External Relations of the consortium.
“It was also a first chance for us to appeal to the general motorcycle public. That was very motivating for us, because when we showed what this technology can do, people were really positive! Especially the fact that car drivers would be warned that a motorcycle is nearby is very much appreciated. Almost every motorcyclist can tell stories about the shocking moments when a car driver didn’t see him or her, so this is quickly understood as a huge benefit!”
To create the demonstration, CMC was assisted by a new supporter, the global IT service provider Luxoft which developed the demo software for the user interface on the show car.
The CMC demonstration was part of a special interest-area called the “Connected Motorcycle World” where also other organisations showed new and interesting technologies for motorcycles in the future.
Hennes adds “When talking to people, an interesting thing that came out was the concern if the data would be stored, or who could see it. Clearly, data privacy is an important issue with this new technology so it will be important for us as manufacturers to take good care of that when developing these future systems.”

CMC introduces the Connected Motorcycle World at Intermot

27/8/2018

 
Picture
For the first time, the Connected Motorcycle Consortium will demonstrate connectivity and safety applications for motorcycles at a consumer show.
Thomas Bischof, coordinator in CMC says: “Together with other stakeholders in motorcycle connectivity, we will demonstrate safety applications designed for motorcycles. We’re looking forward to get the motorcycle riders opinion about these future technologies. In particular, the system that warns car drivers that motorcycles are nearby, might inspire the riders. As we know, the other vehicle driver not seeing the motorcycle causes a majority of motorcycle accidents. Our systems will warn the car driver, when a critical situation occurs!”
 
The International motorcycle show Intermot takes place from 2nd to 7th October 2018 at the Koelnmesse in Cologne, Germany. The CMC stand, which is called ‘Connected Motorcycle World’ will be located in Hall 6, Stand number A040/B047.
CMC representatives will be available to visitors to demonstrate the connectivity applications on a motorcycle. Also, presentations are foreseen during the show, where more background information about the consortium and the technology will be given.
Picture
Next to the safety technologies demonstrated by CMC, across the 250 square metres of exhibition area one can try out the smartest technologies relating to motorcycles:
  • in-helmet head-up displays,
  • headsets for group talks,
  • automatic emergency calls,
  • apps that link them all together... 
Biking will be safer and more relaxed than ever!

The CMC exhibits at the 2018 OECD International Transport Forum

3/6/2018

 
The Connected Motorcycle Consortium (CMC) participated at the 2018 edition of the OECD International Transport Forum in Leipzig, Germany. During the event, titled “Transport Safety and Security”, CMC experts discussed with attendees the potential of connected intelligent transport systems (C-ITS) to improve motorcycle safety, the need for interoperable C-ITS applications as well as the risks and benefits of car automation for motorcyclists’ safety. Commenting on the discussions that took at the Forum, Hennes Fischer, Senior Adviser to Yamaha Motor Europe says: “We are delighted to be here today at the ITF Transport Fortum to show the results of the work of the members of the Consortium. Connected mobility will be a key feature of future transport systems, and we need common basic specifications for motorcycle ITS. Our main objective over the coming years will be to develop as many cross-manufacturer standards as possible”.
Picture
Picture
Dr. Veneta Vassileva talked about ACEM safety strategy
Tomohiro Matsuda, Regulatory affairs and engineering manager for Kawasaki Motors Europe says: “The technologies in exhibition today offer a glimpse into the future of mobility. The use of cooperative safety systems for motorcycles will help us to increase safety for motorcyclists as well as riding pleasure”.
The European Association of Motorcycle Manufacturers, ACEM*, was also present at the International Transport Forum. Dr Veneta Vassileva, ACEM’s road safety coordinator, elaborated on some of the different initiatives led by the industry to improve motorcycle safety in Europe, such as the ACEM road safety strategy or the European training quality label, that aims at promoting high quality post license training schemes across the EU.
Moreover, the Secretary General of the International Motorcycle Manufacturers’ Association, Edwin Bastiansen, delivered a presentation about motorcycle safety at an international level.

*ACEM, the European Association of Motorcycle Manufacturers represents manufacturers of mopeds, motorcycles, three-wheelers and quadricycles (L-category vehicles) in Europe and is associate member of CMC.

CMC and ACEM at the 2018 OECD International Transport Forum

8/5/2018

 
The Connected Motorcycle Consortium (CMC) and the European Association of Motorcycle Manufacturers (ACEM) will participate in the 2018 edition of the OECD International Transport Forum that will take place between 23 and 25 May in Leipzig, Germany.
The theme of the Forum will be “Transport Safety and Security” and it will address a wide range of issues including: connected vehicles,  planning and design of safety transport systems, road infrastructure and safety management and the link between economic activity and road safety trends.
Motorcycle safety experts from the CMC and ACEM* will be present at the 2018 International Transport Forum to elaborate on some of the different initiatives led by the industry to improve motorcycle safety in Europe, CMC experts will discuss with attendees the potential of connected intelligent transport systems (C-ITS) to improve motorcycle safety, the need for interoperable C-ITS applications as well as the risks and benefits of car automation for motorcyclists’ safety.
Moreover, the Secretary General of the International Motorcycle Manufacturers’ Association will deliver a presentation on the situation of motorcycle safety at an international level.
Picture

New members and wider focus

19/3/2018

 
CMC work is supported now by seven world leading motorcycle manufacturers. The Italian make Ducati has joined the consortium recently, following KTM from Austria, next to Japanese makers Kawasaki and Suzuki. BMW Motorrad, Honda and Yamaha remain the core members and have been the driving force to establish CMC.
CMC can now also welcome a major player in automotive connectivity. Autotalks is known for its top end developments in vehicle communication systems and will actively support CMC as Development Member.
Under its WG Unification & Interoperability, CMC has established a special task group dedicated to evaluation of HMI criteria in the context of C-ITS messages. Together with CMC member WIVW (Würzburg Institute for Traffic Science) 2 riding simulators are used to investigate the optimal information strategy and evaluate warning timing for various C-ITS functions.

Picture

CMC discuss the future of connected motorcycling at ITS World Congress

22/11/2017

 
Experts from CMC and the motorcycle industry, the European Commission, the U.S. Department of Transportation and other organisations met at the ITS World Congress in Montreal, Canada, to discuss the future of intelligent transport systems and motorcycling. The discussions took place during the ‘Motorcycle talk ITS’ roundtable moderated by Antonio Perlot, Secretary General of the European Association of Motorcycle Manufacturers (ACEM), being member of CMC. The participants examined some of the most important initiatives in the field of connected vehicles as well as the challenges and opportunities offered by cooperative ITS.

More information in Newsletter #3

Picture

CMC initiates special session on motorcycles

3/10/2017

 
For the first time, a dedicated session on motorcycles has been organized based on a CMC initiative at the next edition of the ITS World Congress in Montreal. The European Association of Motorcycle Manufacturers will support a roundtable titled ‘Motorcycle talk ITS’. The discussions will be moderated by the ACEM Secretary General Antonio Perlot and will take place on 1 November at the Palais des Congrès Convention Center, Montreal, Canada.
Motorcycle industry experts, including representatives of CMC, European, Asian and American policy-makers and other stakeholders will discuss key issues as: the potential of C-ITS to significantly improve motorcycle safety, the risk of transferring ADAS from cars to motorcycles without dedicated engineering solutions, the need for interoperable C-ITS applications, as well as the impact of automated cars on motorcycle safety.
CMC will have a booth in the exhibition hall and contribute furthermore with technical presentation to a special interest session on motorcycles preceding the round table talks.

Picture

Motorcycle topics for U.S.

14/7/2017

 
Picture
For the first time a Motorcycle Consortium dedicated to ITS issues has joined the ESV conference in Detroit. CMC members used the opportunity during conference to speak directly to US rule makers, associations and the industry about the specific requirements for motorcycles regarding ITS implementation. Many have visited the CMC booth in the exhibition area. Since US has just passed a ‘Notice of proposed rulemaking’ for ITS deployment mainly aimed at cars, the motorcycle industry took up the challenge to bring their issues to the attention of US officials and other stakeholders. The appearance of CMC in US was very well received.
Later this year, CMC will be present at the ITS World Congress in Montreal. For the first time a special session on motorcycles is supported by the consortium together with ACEM, the Association of European Motorcycle Manufacturers and other stakeholders.

CMC went ESV 2017

21/6/2017

 
Picture
In June 2017 the Enhanced Safety of Vehicle (ESV) Conference took place in the ‘MotorCity’ Detroit.
At the CMC booth – located in the exhibition area of the CoBo Center – representatives of several CMC members informed interested Conference attendants about objectives, focus, outcomes and Consortium membership.

<<Previous

    Archives

    January 2023
    November 2022
    September 2022
    April 2022
    December 2021
    September 2021
    May 2021
    February 2021
    December 2020
    October 2020
    April 2020
    December 2019
    September 2019
    May 2019
    April 2019
    October 2018
    August 2018
    June 2018
    May 2018
    March 2018
    November 2017
    October 2017
    July 2017
    June 2017
    November 2016
    September 2016

    RSS Feed

COPYRIGHT 2022 Connected Motorcycle Consortium

PRIVACY POLICY

Contact Us

    Subscribe to our newsletter!

Submit
  • Home
    • Members
  • Safety
  • Applications
  • Basic Specification
    • Overview
    • Assessment
    • Use Case Specification
    • Application Specification
    • System Specification
    • Evaluation Report
    • Other standards
    • HMI
    • Roadmap
  • Research
    • Accidentology
    • Conspicuity
    • Rider Reaction Time
  • News
  • Downloads